

PHYSICS 1

KINEMATICS, NEWTON'S LAWS, FORCES, MACHINES, AND ROTATIONAL MOTION

Lesson	Date		Pages
Intro	Wednesday Sep 6	Introduction \& Quiz Show Practice	-
1	Monday, Sep 11	What is Physics?	$4-7$
2	Wednesday, Sep 13	Mighty Measures	$8-14$
3	self-paced	Fun Physics Tricks	$15-17$
4	Monday, Sep 18	Tracking Motion	$18-22$
5	Wednesday, Sep 20	Graphing Motion	$23-27$
6	self-paced	Physics Memory Game	28
7	Monday, Sep 25	Velocity	$29-33$
8	Wednesday, Sep 27	Acceleration	$34-36$
9	self-paced	Function Carnival and Degree Golf	$37-39$
10	Monday, Oct 2	Relative Motion and Combining Vectors	$40-43$
11	Wednesday, Oct 4	LINEAR MOTION QUIZ SHOW	-
12	self-paced	Assessment	$44-47$
13	Monday, Oct 9	Forces	$48-53$
14	Wednesday, Oct 11	Free Body Diagrams	$54-58$
15	self-paced	Cup Stack Challenge	59
16	Monday, Oct 16	The Law of Inertia	$60-63$
17	Wednesday, Oct 18	Mass vs Weight	$64-66$
18	self-paced	Inertia Experiments	$67-70$
19	Monday, Oct 23	Newton's Second Law	$71-75$
20	Wednesday, Oct 25	Actions and Reactions	$76-79$
21	self-paced	Balloon Races	$80-81$
22	Monday, Oct 30	Gravity and Free Fall	$82-86$
23	Wednesday, Nov 1	Space Station Physics	$87-89$
24	self-paced	Lab Reports and Gravity Project	$90-95$
25	Monday, Nov 6	NEWTON'S LAWS QUIZ SHOW	-
26	Wednesday, Nov 8	Kinetic vs Potential Energy	$98-102$
27	self-paced	Assessment	$96-97$
28	Monday, Nov 13	Work	$103-105$
29	Wednesday, Nov 15	Power	$106-109$
30	self-paced	Double Bounce	$110-111$
31	Monday,Nov 27	Momentum and Collisions	$112-115$
32	Wednesday, Nov 29	Center of Mass	$116-118$
33	self-paced	Racing Wheels and Center of Mass	$119-121$
			56

Lesson	Date	Topic	Pages
34	Monday, Dec 4	Rotational Motion	$122-123$
35	Wednesday, Dec 6	Simple Machines	$124-126$
36	self-paced	Tensegrity Table	127
37	Monday, Dec 11	Mechanical Advantage	$128-129$
38	Wednesday, Dec 13	Relativity	$130-132$
39	self-paced	Rube Goldberg Machine	133
40	Monday, Dec 18	FINAL QUIZ SHOW	-
41	self-paced	Assessment	$134-136$

SUPPLY LIST:

Lesson 3 - Fun Physics Tricks

- 1 bottle with a narrow neck
- Piece of paper or a dollar bill
- 5 quarters
- 3 matches or flat-tipped toothpicks
- 1 shoelace
- 2 books of approximately the same size

Lesson 15 - Cup Stack Challenge

- 5 stackable paper cups
- 4 index cards or squares of paper
- 15 coins (any type)
- 4-6 short lengths of string or ribbon
- Tape

Lesson 18 - Inertia Experiments
Egg Splash

- Toilet paper tube
- 1 "light" egg
- 1 "heavy" egg
- Aluminum pie pan or piece of cardboard
- A large cup
- Rag or towel (for cleanup)

Tablecloth Pull

- Smooth cloth or scarf
- Bath towel
- Flat table surface
- Unbreakable dishes or water bottles

Inertia Hat

- Wire cutters (optional)
- Wire hanger
- 2 balls (tennis, wiffle) or other objects

Lesson 21 - Racing Balloons

- 2 Balloons
- 2 straws
- 30+ feet of thread or fishing line
- $30+$ feet of twine
- Tape
- Clip or clothespin (optional)

Lesson 24 - Gravity Project
Water Rocket Lab*

- Empty plastic 2 liter or 1 liter bottles
- A rubber cork and tubing to fit to a bike pump
- Fins to stabilize the bottle
- Bike pump

Hang Time Lab

- A tennis ball to throw
- Camera or stopwatch for timing
- Ball launcher

Horizontal Motion and Gravity Lab

- 2 identical coins
- Camera for timing
- Ruler
- Measuring tape

Lesson 30 - Double Bounce

- A larger ball that bounces such as a basketball or soccer ball
- A smaller ball that bounces such as a tennis ball or racquet ball
- Camera (for timing)
- Glue gun (optional)

Lesson 33 - Wheels and Rotation
Racing Wheels

- 12 Small paper plates
- 3 Pencils
- Pennies or other small weights such as nuts or bolts
- Tape or glue
- Sloped table or ramp
- Nail or drill to make a hole in a paper plate

Center of Mass

- Paperclip
- Pencil or pen
- Push pin
- Cardboard cereal box
- Straight edge
- String or yarn

Lesson 36 - Tensegrity Table

- At least 12 popsicle sticks
- $60 \mathrm{~cm}(2 \mathrm{ft})$ of string
- A drill
- Hot glue, super glue, or duct tape

Lesson 39 - Rube Goldberg Machine

- Use any supplies you have on hand!
*A water rocket kit is recommended for this activity

PHYSICS - THE FUNDAMENTAL SCIENCE

Physics is a broad field of science dedicated to understanding matter, space, energy, and time. It has dozens of different areas of specialization!

If you could spend a day working with a physicist, which of these areas would you like to explore? Put a star or checkmark by your top three choices.

Pick one of the topics you selected above. What do you alreapy know about it? What are you curious about?
\qquad
\qquad

(1) DO THE HANDS-ON ACTIVITIES

Gather all of the supplies in advance. Record your results and share them with a friend.

WHEN WILL YOU GET SUPPLIES AND WHERE WILL YOU STORE THEM? WHO WILL YOU SHARE RESULTS WITH AND HOW? MAKE A SPECIFIC PLAN FOR DOING THE ACTIVITIES:
\qquad
\qquad
\qquad
(2) USE THE NOTES

Fill them out! This can be done in advance, during, or after watching the video lesson.

MAKE A SPECIFIC PLAN FOR USING THE NOTES:
\qquad
\qquad
\qquad
(3) LEARN THE VOCABULARY

Play the physics vocab memory game, use the vocab list to make flashcards, redefine the terms in your own words, or practice using physics terms in everyday conversations.

MAKE A SPECIFIC PLAN FOR LEARNING THE LANGUAGE OF PHYSICS:
\square

DO ALL OF THE PRACTICE PROBLEMS

Each lesson has a page or two of practice problems that should be completed individually after each lesson. Solve them on your own before looking at the answer key!
The practice problems will:

- Give you a solid foundation for more advanced science courses
- Strengthen your critical thinking and reasoning skills
- Show you how math can be used to solve real-world problems
- Prepare you to defeat Math Dad in our quiz shows

Make a specific plan for conquering the practice problems. When and where will you work on them?

WHAT WILL YOU DO IF THERE IS A PROBLEM YOU DON'T UNDERSTAND?
\qquad
\qquad

WHAT WILL YOU DO IF THERE IS A LESSON OR SET OF PRACTICE PROBLEMS THAT FEEL TOO EASY OR BORING?

HOW WILL YOU MEASURE YOUR PROGRESS OR CHECK YOUR WORK?
\qquad
\qquad

ARE YOU READY FOR PHYSICS?

To build a strong knowledge base in physics you'll need some math skills! How do you feel about each of these areas? If your knowledge is shaky in one of these topics, you should strengthen it before starting this course.

NUMBERS \& ARITHMETIC
Strong arithmetic skills with addition, subtraction, multiplication, division, fractions, and decimals.

Can perform calculations using both positive and negative numbers and use a calculator to carry out more complex calculations.

For example: Use a calculator to find the decimal approximation of the number $\sqrt{ } 31$ accurate to two decimal places.

SLOPE \& COORDINATE PLANE

Be able to plot and interpret points in the plane.
Can interpret the meaning of a simple graph.
Know that slope is rise over run.
$\binom{3 a=12}{a=?}$ VARIABLES \& EQUATIONS
Know that a variable is a letter or symbol representing an unknown value.
Be able to substitute a value in place of a variable.
Can solve a simple equation involving a variable.
For example: $3+a=5$. What is $a ? 4 x=12$. What is the value of x ?
23 EXPONENTS
Understand and be able to expand exponents.
For example: 10^{3} means $10 \cdot 10 \cdot 10$, which equals 1,000 .
Can recognize and interpret numbers in scientific notation (Optional. We won't use scientific notation often and it could be picked up during class.)

For example: $4.5 \times 10^{4}=45,000$

Unit 1: Kinematics

This unit covers how to describe and explain the motion of objects using graphs, diagrams, numbers, and words. Kinematics is all about how measurements are made!

FILL IN THE BLANKS: \quad one \quad advantage \quad units \quad standard \quad prefixes

The metric system or SI (International System of Units) is the international \qquad of measurement. The SI has 7 base \qquad that are defined in relation to universal constants. One \qquad of SI is that it has only \qquad unit for each quantity or type of measurement. SI systems uses the same \qquad to represent multiples or powers of 10 . Kilo means 1,000 , so a kilometer will always have 1,000 meters and a kilogram contains 1,000 grams, etc.

CONVERTING UNITS:

Use the steps shown in the two examples below to complete the next conversions:

1. HOW MANY FEET LONG IS A MARATHON?

A marathon is 26.2 miles.
There are 5,280 feet in 1 mile.
$26.2 \mathrm{mi}=26.2 \mathrm{mi} \cdot 1$
$=26.2 \mathrm{mi} \cdot \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}}$
$=\frac{26.2 \text { nरí } \cdot 5,280 \mathrm{ft}}{1 \text { niri}}$
$=138,336 \mathrm{ft}$
3. How many marathons would it take to EquAL THE CIRCUMFERENCE OF THE EARTh?
Circumference of the Earth $=24,902$ miles.
2. HOW MANY METERS TALL IS MATH DAD?

There are 3.28 feet in 1 meter. Math Dad is 5.5 ft tall.
5.5 feet $=5.5 \mathrm{ft} \cdot 1$
$=5.5 \mathrm{ft} \cdot \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}$
$=\frac{5.5 \mathrm{ft} \cdot 1 \mathrm{~m}}{3.28 \mathrm{ft}}$

$$
=1.68 \mathrm{~m}
$$

4. How many minutes are there in June?

Measuring is an important tool in physics. Can you rank the following from shortest to tallest? Each has been measured accurately, but the measurements are in different units!

Use the table to convert each of the measurements above to meters. Then sketch each object onto the grid below to see how they compare in height to the Great Pyramid of Giza.

IMPERIAL SYSTEM
1 foot $=12$ inches
1 mile $=5,280$ feet
METRIC SYSTEM
1 meter $=1,000$ millimeters
1 meter $=100$ centimeters
1 kilometer $=1,000$ meters
CONVERTING IMPERIAL TO METRIC
1 inch ≈ 2.54 centimeters
1 mile ≈ 1.609 kilometers
1 foot ≈ 0.3 meters

Some things, like the volume of a jar, can be measured directly. When candy is in a sealed jar, the number of candies can't be counted directly, but measurements can be used to give a good estimation.

How many candies in the jar?

1 pint jar $=473 \mathrm{~cm}^{3}$
1 candy $=1.65 \mathrm{~cm}^{3}$
17 candies fit on the bottom row of the jar The jar is almost 10 candies tall

A single piece of paper is too thin to be measured with a ruler - or is it?
Use the clues below to measure the thickness of a piece of paper indirectly!
How thick is 1 piece of paper?

A stack of 100 papers is 1.2 cm tall.

A MEETING OF IMPERIAL MEASURES

WHAT'S ON THE	THERE HAVE BEEN
AGENDA FOR	COMPLAINTS THAT
TODAY'S	OUR SYSTEM IS MORE
DIFFICULT TO USE.	
MEETING?	

THE BASE UNITS

O	Length meter (m)
(1)	Time Second (s)
38	Quantity Mole (mol)
Ood	Electric current Ampere (A)
饬	Temperature Kelvin (K)
$\underset{W}{\square}$	Luminous intensity Candela (cd)
KG	Mass Kilogram (kg)

WHERE THEY CAME FROM

The distance from the North Pole to the equator divided by ten million
$1 / 86,400$ of a day
The number of atoms in 12 grams of carbon
$1 / 10$ the electric current that produces a certain amount of force
Kelvin $=$ Celsius + 273 degrees (the C the freezing/berailing points of water)
The brightness of a standard candle flame
The weight of one liter of water

BASE UNITS CAN BE COMBINED TO MAKE MANY MORE UNITS!
Circle the units you've seen before. Put a box around ones that are new or unfamiliar.
hertz
pascal
newton
volt
watt
ohm
joule
lumen
farad
sievert
coulomb

Fill in the missing prefixes, symbols, and multipliers below:

Practice Problems - Mighty Measures

MATCHING LENGTHS:

Draw a line to match each distance with its best measurement.

1 km

$$
1 \text { in }
$$

1 mm

1 ft

1 yd
1 mi

1 cm
The distance walked in 10 minutes

1 m

A TABLE ON COMPUTER DATA:

Use your knowledge of the metric system to complete the table below and fill in the blanks below:

Unit:	Number of bytes:
byte	1
Kilobyte (KB)	1,000
Megabyte (MB)	
Gigabyte (GB)	
Terabyte (TB)	
Petabyte (PB)	

\qquad

1 terabyte = \qquad megabytes.
\qquad $\mathrm{GB}=1 \mathrm{~PB}$

How many kilobytes are in a petabyte?

Convert units to answer each question. Practice doing neat work!

(1) Jerry says he'll trade Jill 41 dimes for 16 quarters. Jill agrees. Who has more money after the trade and why?
(2) How many dollars are the same value as 61 quarters?
(3) How many Abs are in 10 Gabs?

$$
\begin{gathered}
1 \mathrm{Ab}=4 \mathrm{Babs} \\
3 \mathrm{Babs}=7 \mathrm{Cabs} \\
2 \mathrm{Cabs}=3 \mathrm{Dabs} \\
7 \mathrm{Dabs}=1 \mathrm{Fab} \\
6 \mathrm{Fabs}=1 \mathrm{Gab}
\end{gathered}
$$

Challenge Question How many Fabs are in 8 Babs?

Challenge Question

The pine processionary caterpillar (Thaumetopoea pityocampa) is 4 cm long. When migrating, the caterpillars march in a single-file line. If a line of caterpillars is just under 1 mile long, then how many caterpillars are marching in the line?

MATERIALS

1 water bottle with a narrow neck and lid that can be partially filled with water

1 shoelace or 60 cm
(2 ft) of yarn

3 matches or flat-tipped toothpicks

\$○\$

A dollar bill or similarlysized piece of paper

2 books that are approximately the same size

5 quarters

60ALS

\sim Experience curiosity and wonder about physics!
Get hands-on experience with physics principles that we will learn about later in this course.
\leadsto Bonus: Learn 3 tricks that can stump your friends and family members!
(1) MIGHTY MATCH CHALLENGE

Can you hang a water bottle from the edge of a table using only 3 matches and yarn?

1. Tie the yarn to a water bottle that is $1 / 4$ full of water. For best results, the bottle should not weigh more than 0.4 kg (1 pound or 16 ounces). The yarn should extend from the bottle in one long loop. Make sure the yarn is secure and supports the weight of the bottle.
2. Place a match on the edge of a table so that it dangles a bit more than half-way over the edge. Place a counterweight (such as the two books) on the end of the match to hold it in place.
3. Hang the bottle from the match so that the string is up against the side of the table.
4. Place a second match about one match length below the match that is placed on the table and orient it so that it is wedged between the two strands of string.
5. Wedge a third match between the two matches so that the heads are touching. Adjust as needed.
6. Once the matches are steady, remove the counterweight.

WHAT IS HAPPENING?

Why do you think this trick works? Don't try to look up the answer yet - explore and come up with your own ideas first!

(2) DOLLAR BILL CHALLENGE

1. Place a dollar bill on a bottle and then place 5 large coins such as quarters on top. Challenge a friend to remove the bill without touching the bottle or knocking off the coins.
2. To remove the bill, pinch one end of the bill with one hand. Don't pull. This hand need to remain stationary.
3. Push down with your other index finger to form a bit of a valley.
4. Slap down quickly with the flat index finger, pushing on the area where the dip in the dollar bill was. The other hand that is pinching the dollar bill should remain stationary.

With a bit of practice, you'll be able to push fast enough on the bill that it will slide out but the the coins will stay in place!

WhAT IS HAPPENNG?

Why do you think this trick works? Don't try to look up the answer yet. First explore and come up with your own idea!

(3) BOOK PULL CHALLENGE

Can you pull two books apart when the pages are overlapped?
1.Take two books or two packs of post-it notes and place them on a table or other flat surface. Hold up all but the back cover and overlap the back covers so that $1 / 4$ to $1 / 2$ of one of the pages is covered by the other book.
2. Let the pages flip down so that they alternate.
3. Once the pages have been interwoven and the books are closed, challenge someone to hold on the spine of each book and pull them apart.
 the answer yet. Explore and come up with your own ideas first!

Did the demonstration work? What tips would you give someone else trying this for the first time? Did the activity spark any questions or discoveries?
\qquad
\qquad
\qquad
\qquad

Did the demonstration work? What tips would you give someone else trying this for the first time? Did the activity spark any questions or discoveries?
\qquad
\qquad
\qquad
\qquad

Did the demonstration work? What tips would you give someone else trying this for the first time? Did the activity spark any questions or discoveries?
GMZ
A PERSON WHO
HAS MADE ALL
THE MISTAKES
THAT CAN BE
MADE IN A VERY
NARROW FIELD.
-NIELS BOHR

If at first you don't succeed, analyze, revise, and then try acjain.

You already have a lot of experience with mechanics, the branch of physics that studies the motion of objects. Understanding vectors will help give you tools to make models and speak the language of physics!

The terms illustrated below are: acceleration, displacement, distance, mass, speed, temperature, temperature gradient, time, velocity, and weight. Write each term next to the matching illustration.

In physics, the size or measurement of something is called its \qquad . A quantity that tells us the magnitude but NOT the direction is called a \qquad quantity. Often, we need to know both measurement AND \qquad . The direction can be described in relation to an object using terms like up, down, north, south, east, west, left, or right. A quantity that has both a magnitude and a direction is called a \qquad quantity.

Distance: \qquad
Displacement: \qquad

Distance: \qquad
Displacement: \qquad

When we know the distance traveled and how much time it took, we can calculate how fast an object was moving, or its speed. The ladybug on the ruler moved 5 cm in 5 seconds, so its speed is $5 \mathrm{~cm} / 5$ seconds or $1 \mathrm{~cm} / \mathrm{s}$.

Calculating Speed

The dots below indicate the position of a runner every 20 seconds as they run along a path.

How far did they run? Be sure to include units in your answer!

How fast did they run? (Answer in km/hr)

Assuming the runner kept the same pace, how long will it take to run 1 kilometer?

The dots below indicate the position of a car every 10 minutes driving south.

How fast did the car travel during the first 45 km ?

When did the car slow down?

How long did it take the car to reach the 75 km mark?

Practice Problems - Tracking Motion

IS IT A VECTOR?

Draw lines to classify each measurement below as either a vector, a scalar, or neither a vector or scalar.

MEASURE THIS MOTION:

(1) Eli travels around the equator of the world in 70 days, arriving back in the exact same position from which he started his journey. What is his displacement?

(2) Aisha and Arjun are training to run a 5 K race. They ran for 24 minutes and want to know if they reached their daily running goal of completing 3 kilometers. Which will be most useful in answering their question: distance or displacement?
(3) Kat drove 200 miles in 4 hours. What was her average speed?

Practice Problems - Tracking Motion

(4) A car is driving on a freeway at a speed of $100 \mathrm{~km} / \mathrm{h}$.
A. How far does the car travel in 1 min ?
B. A blink lasts for about 0.3 s . How many meters does the car travel while the driver blinks?
(5) The formula showing the relationship between r (rate), d (distance), and t (time) is often written as $d=r t$. Rearrange the variables to solve for r and t.
(6) On her bike, Jade travels n miles north and then turns around and travels s miles south.
A. Use s and n to write an expression that shows how far Jade traveled.
B. If Jade travels directly north and then turns around and travels directly south, will her displacement be the same as the total distance traveled?
C. Calculate Jade's displacement when $n=4$ and $s=7$. Then write a sentence explaining what the calculation means.
(7) A go-kart track has a length of 500 m .
A. What is the average speed in m / s of a go-kart that completes 3 laps in 2.5 minutes?
B. How many laps would be completed in 4 minutes at an average speed of 8 m / s ?

C. What is the displacement for a go-kart that has completed 7 complete laps?

GRAPHING MOTION
Graphs are useful for sharing information. They let us see
a lot of data at the same time and help us understand the relationship between two or more things.

Graph the movement of the bee and ladybug below with position on the vertical axis and time on the horizontal axis.

0 sec

1 sec

2 sec

3 sec

4 sec

7 sec

Match the time/position graph with the correct insect:

GRAPH 2

GRAPH 3

The graphs below represent the position of 3 birds on the ruler. Write a sentence or two describing what each bird is doing.

The Coast Guard boat received a call for help from a small boat. Which vector would result in a rescue?

Which vectors have the correct magnitude but the wrong direction?

Which vectors have the correct direction but the wrong magnitude?

Identify 2 or more vectors that the Coast Guard could combine to reach the boat.

Practice Problems - Graphing Motion

The graph to the right shows the position of an ant walking back and forth across an unusual ruler that includes negative numbers.
(1) Where did the ant start her journey?
(2) When was ant at rest?

Position (cm)

(3) When was the ant crawling to the right?
(4) When was the ant at the 1 cm mark?
(5) When was the ant traveling fastest?
(6) Use the number line to trace the path of the ant from start (0 seconds) to finish (10s)

(7) Write a short narration explaining the meaning of the graph. How would you explain the ant's motion it to a person who couldn't see the graph?

Practice Problems - Graphing Motion

(8) FAST OR SLOW?

One of these lines represents the motion of a rabbit moving forward very quickly. The other is for a tortoise moving slowly. Which is which and how can you tell?

(9) MATCHING GRAPHS:

Below are 5 different graphs of distance versus time (which work the same as position vs time graphs). Match each graph with the appropriate description.

(10) The dots below indicate the distance that a rock falls every 0.25 seconds after being dropped.

How long did it take for the rock to fall 60 feet?

When was the rock falling slowest?

How fast was the rock falling on average from 1 s to 2 s ?

