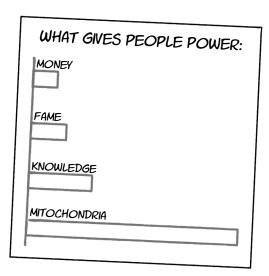

~ MICROBIOLOGY ~


	Lesson	Topic	Page(s)	
Unit 1 Cells	1	It's alive! Or is it? Characteristics of living things and why we study biology		
	3	The discovery of the cell Laser Pointer Microscope	8-11	
	3	The Parts of the Cell Meet the organelles. Prokaryotes & Eukaryotes	12-15	
	4	Unicellular vs Multicellular life A look at the incredible diversity of cellular life!	16-17	
	5	Cell Quiz Show Practice Quiz 1	18-21	
Unit 2 Bio- molecules	6	Biomolecules The molecules that make living things	22-23	
	7	Osmosis! All about cell membranes and why we salt our food		
	8	Proteins and Enzymes A deeper look at enzymes and cell proteins	27-28	
	9	Sugars and Carbohydrates The main source of energy	29	
	10	DNA The instructions for the cell	30-31	
	11	Extract DNA from fruit Hands on science project	32-35	
	12	Mitosis and cell division How one cell becomes two	36-37	
	13	Biomolecules Quiz Show Practice Quiz 2	38-39	

There are 5 projects in the course, each listed in bold in this table of contents. A supply list for all projects and activities can be found on page 5.

	Lesson	Topic	Page(s)
	14	Where does energy come from? Eating vs making food	40
	15	Animals & Fungi Diversity of the consumers	41-42
	16	Cellular Respiration Making energy in the mitochondria	43-44
Unit 3	17	Plants The big producers	45-46
Diversity of Life	18	Photosynthesis Making sugars in the chloroplast	47-48
	19	The Single-Celled Archaea The most diverse groups of all	49-50
	20	DIY Petri Dishes Culture your own microorganisms	51-53
	21	Diversity of Life Quiz Show Practice Quiz 3	54-55
	22	Systems of the human body The body is made of different systems of cells	56-57
Unit 4 Human Physiology	23	What is blood? Introduction to circulatory system and different blood cells	58-60
	24	Why we need to breathe An introduction to the respiratory system	61-62
	25	How nerves work Introduction to the nervous system and the longest cells!	63-64
$igg igcup_{=} igg $	26	There's more of us than you! Introduction to the digestive system and the microbiome	65

	Lesson	Topic	Page(s)
	27	The Immune System An introduction to the body's most fascinating system	66-68
│	28	How Antibodies Work The basic defenses and fighters against infections	69
Unit 4 Human	29	You're Allergic to What? How a misbehaving immune system causes allergies	70-71
Physiology	30	What makes things poisonous? What happens when things go wrong in the cell	72-75
	31	Physiology Art Hands on science project	76
	32	Physiology Quiz Show Practice Quiz 4	77
	33	Most Wanted Microbes An overview of viruses, fungi, bacteria, and parasites	78-80
	34	Pre-industrial Medicine A look at common 16th century treatments	81-82
	35	Scurvy and Trials The evolution of modern medicine	83-85
	36	The Story of Smallpox How a deadly disease led to the first vaccine	86-89
Unit 5 Micro- biology	37	The Problem with Polio An exercise in understanding and comparing risk	90-91
Disingly	38	Elementary Epidemiology Lessons from looking at diseases in large populations	92-95
	39	Penicillin & the Discovery of Antibiotics How a moldy dish led to medicine	96-97
	40	MRSA and antibiotic resistance How overuse of a good tool is breeding superbugs	98-99
	41	Final Quiz Show And a showcase of Most Wanted Microbe art from students.	100
		Suggested Microbe List	101
Appendix		Most Wanted Microbe Template	102
		Body System Templates	103-106

Have questions, corrections, or suggestions? Contact jenny@science.mom or serge@science.mom

Project Supply List

Lesson 2 - Laser Pointer Microscope

- Laser pointer
- Paper clip or plastic pipette
- Tape
- Water from a stream, pond, or pet water dish

Lesson 11 - Extract DNA from Fruit

- 2 fresh strawberries (or bananas or other fruit)
- ½ cup warm water
- 1 tsp salt
- Plastic bag or bowl and fork
- · 2 tsp concentrated dish soap
- Rubbing alcohol (91%)
- Coffee filter
- Jar or cup
- Meat tenderizer (if using the split pea option)
- Blender (if using the split pea option)

Lesson 21 - DIY Petri Dishes

- 8 oz boiling water
- 1 bouillon cube
- Cotton swabs
- 4 petri dishes (clean containers with lids)
- 1 Tbsp agar (or 1 packet unflavored gelatin)
- 2 tsp sugar
- Permanent marker

Lesson 30 - Physiology Art Project

- Several pieces of waxed paper or tracing paper
- Pencil
- Markers
- Brads (paper fastener)

Lesson 33 - Most Wanted Microbe Art Project

- Copies of the most wanted microbe template
- Pencil
- Markers
- Butter knife (optional)
- Ink and napkin (optional)

Other (optional) Activities

Lesson 16 - Respiration

- 2 Tbsp Yeast
- 2 Balloons
- 2 Water bottles
- Sugar

Lesson 23 - What is Blood?

- 1/3 c measuring cup
- 6 L of water and two containers
- Timer or stopwatch

Lesson 24 - Why We Breathe

- 2 balloons
- Plastic bottle with bottom cut off

Lesson 25 - How Nerves Work

Ruler

Lesson 37 - The Problem with Polio

2 dice

How to get the most from this course:

This course can be used in a variety of ways! You can participate passively by just watching the videos, or actively by filling out the notes and completing the projects. You can do the entire course at once or participate in one lesson or section at a time.

For BEST learning, we recommend:

- Read the pages that go with each lesson before watching the video. Take 10-15 minutes to see if you can fill in the blanks.
- On quiz show days, take the practice quiz before you watch the class!
- Complete each of the science activities, and then share your work with a family member or friend.
- Download the answer key for the notes, but don't look at the answers until after you give things a try yourself!

Next Generation Science Standards

This class covers the following Next Generation Science Standards. Often referred to as NGSS, they are the United States education standards for science.

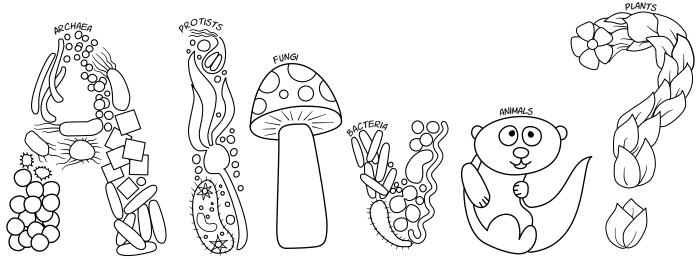
MS-LS1-1: Lessons 4, 5, and 6 Living things are made of cells

MS-LS1-2: Lessons 3 and 22

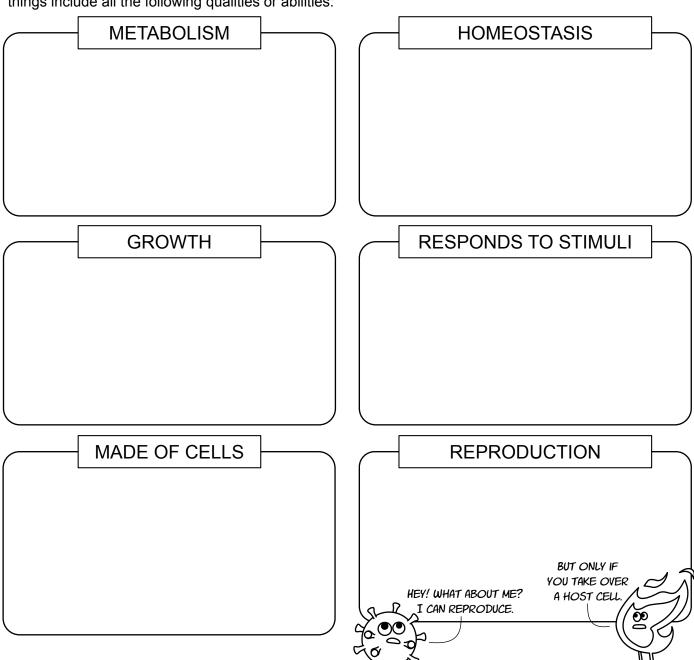
The function of a cell as a whole and how the parts of a cell contribute to that function

MS-LS1-3: Lessons 22, 23, 24, 25, and *T* The body is a system of interacting subsystems composed of groups of cells

MS-LS1-6: Lessons 14, 17, and 18


Photosynthesis and its role in cycling matter and the flow of energy in and out of organisms

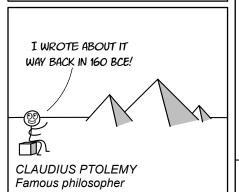
MS-LS1-7: Lessons 14, 15, and 16


How food is rearranged through chemical reactions to form new molecules that support growth and release energy

MS-LS1-8: Lesson 25

Sensory receptors respond to stimuli by sending messages to the brain

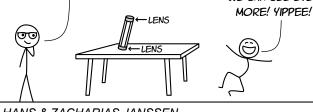
What makes something alive? This is not an easy question to answer! Most definitions agree that living things include all the following qualities or abilities:


The question of whether or We can be programmed to have all of the characteristics of life! not Al is alive is currently being debated, and will be Except being one of the more important made of cells. questions of the century! So? Cells shouldn't even be on the list anyway. Write down three of the best reasons for each side of the argument and then share your opinion. What do *you* think? What are 3 arguments for technology or AI to be considered alive? What are 3 arguments for technology or AI to be considered nonliving? 2₀ _____ What is your opinion?

COULD ARTIFICIAL INTELLIGENCE (AI) BE CONSIDERED ALIVE?

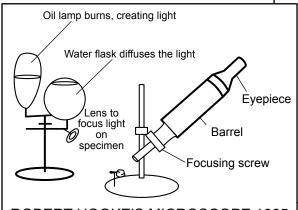
-SCIENCE MMM

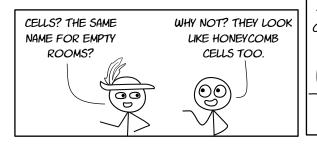
THE DISCOVERY OF THE CELL


FOR THOUSANDS OF YEARS, PEOPLE KNEW THAT CURVED GLASS MAGNIFIED DETAILS.

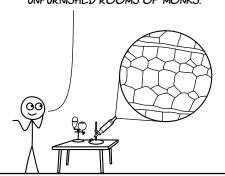
THEN, IN 1590, TWO GLASS MAKERS CREATED THE FIRST COMPOUND MICROSCOPE.

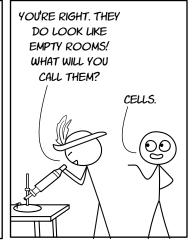
IF WE PUT LENSES ON BOTH SIDES
OF A TUBE, THE OBJECTS ON THE
OTHER SIDE ARE EXTRA MAGNIFIED!

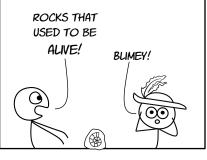

WE CAN SEE EVEN
MORE! YIPPEE!


HANS & ZACHARIAS JANSSEN Dutch glassmakers

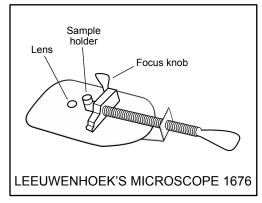
THE NEXT CENTURY
SAW HUNDREDS OF
EXPERIMENTS ON
IMPROVING THE
MAGNIFICATION
OF MICROSCOPES
AND MANY
PUBLICATIONS
ABOUT WHAT WAS
OBSERVED UNDER
THE LENS.


THE MOST FAMOUS OBSERVATIONS WERE MADE BY ROBERT HOOKE...


ROBERT HOOKE'S MICROSCOPE 1665

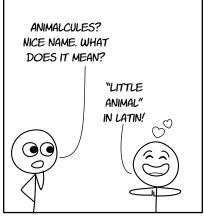


THIS SPECIMEN OF CORK PLANT IS FULL OF PORES! THEY LOOK LIKE THE PLAIN UNFURNISHED ROOMS OF MONKS.

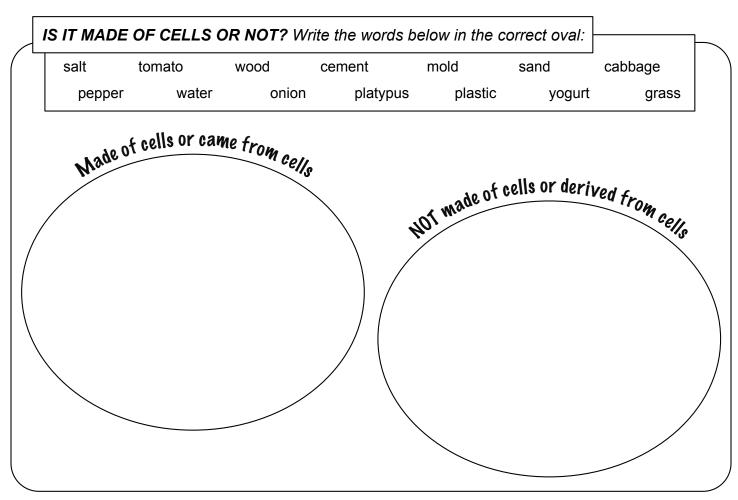


...AND DUTCH SCIENTIST ANTON VON LEEUWENHOEK.

I MADE INCREDIBLY
TINY LENSES BY
MELTING, GRINDING,
AND BLOWING GLASS.

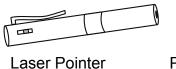

IN THIS MICROSCOPE, BUT
THE QUALITY IS SO GOOD I
CAN SEE WITH 200 TIMES
MAGNIFICATION!

THERE IS ONLY ONE LENS


CONTINUED ON NEXT PAGE...

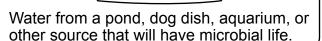
LEEUWENHOEK LOOKED AT POND WATER AND WAS ASTONISHED BY WHAT HE SAW. SO MANY LITTLE ANIMALS! I SHALL CALL THEM ANIMALCULES.

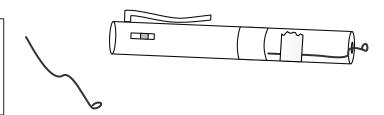
OVER THE NEXT 200
YEARS, MICROSCOPES
BECAME POWERFUL
ENOUGH TO SEE ATOMS
AND WE DISCOVERED
HOW THE PARTS OF
CELLS WORKED!


Your notes:	

Hands-on Science Project

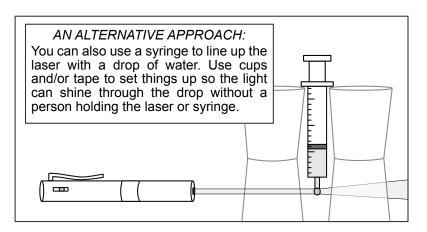
LASER POINTER MICROSCOPE


MATERIALS:



Tape

SAFETY WARNING


NEVER POINT A LASER BEAM AT ANYONE'S EYES. LOOKING DIRECTLY AT A LASER BEAM CAN PERMANENTLY DAMAGE YOUR EYES.

- 1. Straighten out a large paper clip and then bend one end so that it forms a small loop.
- 2. Test the loop to be sure that It holds a water droplet. When you dip it in water and then lift it out again, a drop of water should stay inside the loop. If the loop does not hold water then bend it again and make it smaller.
- 3. Attach the paperclip to the laser pointer with tape so that the loop is directly in the path of the beam.
- 4. Carefully dip the wire loop into a water source that will have bacteria and other microbial life. Pond water, aquarium water, or water from a pet drinking dish are all good choices.
- 5. Shine the laser toward a white surface. For best results, conduct this activity in a darkened room.
- 6. Observe your results and experiment with different sources of water.

SAFETY TIP

WASH YOUR HANDS AFTER HANDLING SAMPLES OF WATER THAT COULD CONTAIN MICROBES.

For BEST results

Choose a source of water that is chlorine free and exposed to sunlight. Observe multiple drops of water from different sources.

Set up the laser in a dark room and shine it on a flat white surface.

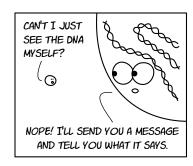
Arrange the laser so that no one is touching it. The less it moves, the better you'll see the microbes in the water.

Adjust the distance between the laser and flat white surface to see which distance gives you the best view.

WHICH SOURCE OF WATER HAD THE MOST MICROBES?

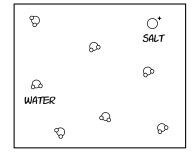
It's time to go exploring! Gather some clean containers or plastic bags and collect water from several sources. If using the paper clip method, be sure to use different paper clips OR to clean your paperclip before testing each sample. If you gather a saliva sample, do NOT put the paperclip in your mouth! Spit into a container and sample the saliva from there. Before you gather your samples, make a prediction about which water will have the most microbes. Then, after observing each sample put a **check mark** by the type of water that had microbes, and a **zero** by water that was microbe-free. Put a **double check mark** by the water that had the MOST microbes. Write NA if you didn't test that type of water.

YOUR PREDICTION: The water with the most microbes wi	ll be	·			
Water from the kitchen sink. Water from a natural outdoor soul that looks clean like a lake or rive Water from a natural outdoor soul dirty or scummy like a puddle, swe	r. rce that looks				
A drop of saliva.					
Water from a pet's water dish.					
Water from the tank (not the bowl	Water from the tank (not the bowl!) of a toilet.				
Other:					
YOUR RESULT: The water with the most observed mi	icrobes was	·			
WHICH OF THESE DID YOU OF YOUR LASER POINTER MIN Check all that applied	CROSCOPE?	Your notes:			
Crieck all triat appli	y.				
Clean water with no microbes. Circular cells that drifted.	Sausage or worm- like cells.				
A swimmer! A cell that is moving itself through the water rather than drifting.					

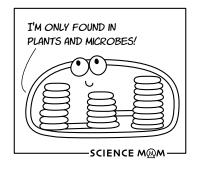

The Parts of a Cell

FILL IN THE BLANKS USING THESE WORDS:

DNA proteins	living	org	anelles	
plasma membrane	dead	cytoplasm	diversity	
The cells that Ro	bert Hook	ke saw in t	he bark of	a cork tree were actually
This is why they looked so empty cells contain several important parts or				
	tha	t help ther	m survive.	Ribosomes build If the
cell has a nucleus	s, it conta	ins the	M	itochondria or chloroplasts are
involved in digesting or creating food for the cell, and all of this activity is contained				
within a cell wall or The liquid inside a cell is				
called the			. Not ever	type of cell will contain all of these
parts. There is in	credible _		betw	een different types of cells!
DRAW LINES TO CONNECT THE NAME & DESCRIPTION WITH THE CORRESPONDING PICTURE				


Cytoplasm

The liquid inside the cell. It's mostly water.


Nucleus

Keeps the DNA separate from the rest of the cell.

Chloroplast

Uses CO₂ and sunlight to create sugars.

Plasma Membrane

Keeps the cytoplasm inside the cell.

Cell Wall

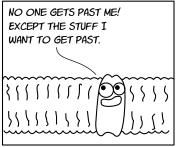
Keeps the cytoplasm inside the cell.

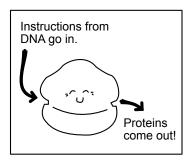
Flagella

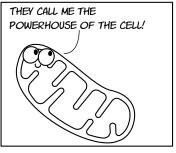
Helps the cell move. Works like a little paddle or tail to push it through the water.

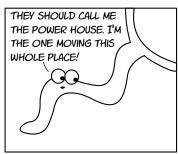
Ribosome

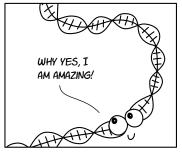
The thing that makes the proteins.

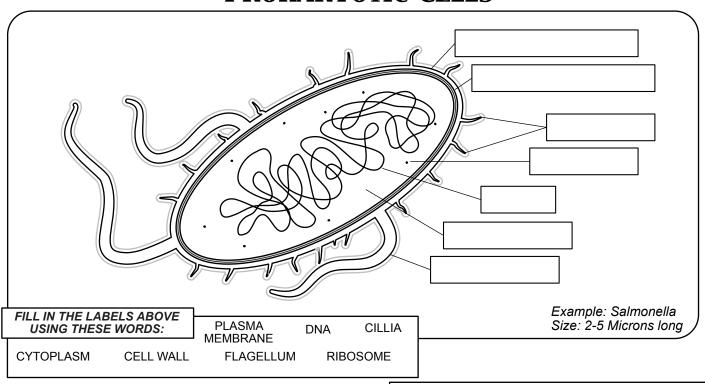

DNA

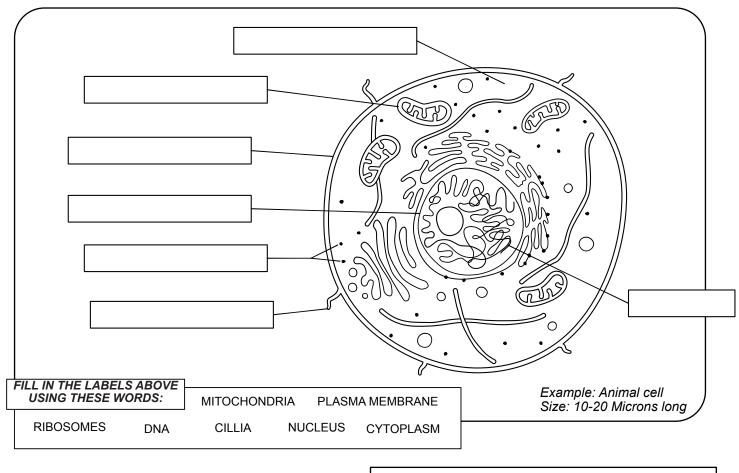

The instructions for making proteins and other stuff for the cell.


Mitochondria

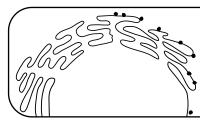

Uses oxygen and sugar to create energy for the cell.







PROKARYOTIC CELLS



Your notes:	IS SOMETHING AS SMALL AS A SALMONELLA BACTERIUM REALLY <i>ALIVE</i> ? LET'S CHECK:
	METABOUSM ✓ IT EATS FOOD AND PRODUCES WASTE.
	SUGARS GO IN. TOXINS COME OUT.
	RESPONDS TO STIMULI ✓ WILL MOVE TOWARD A WETTER AND BETTER ENVIRONMENT
	WHEN IT FINDS A GREAT LOCATION IT FORMS A BIOFILM , A COLONY OF CELLS STUCK TOGETHER WITH SLIME.
	HA HA! THEY'LL NEVER GET RID OF US NOW! TEAM WORK MAKES THE DREAM WORK!
	THIS IS WHY YOU HEAR ABOUT SALMONELLA "OUTBREAKS" IN FOOD. FIRST YOU HAVE ONE, THEN TWO THEN MILLIONS.

EUKARYOTIC CELLS

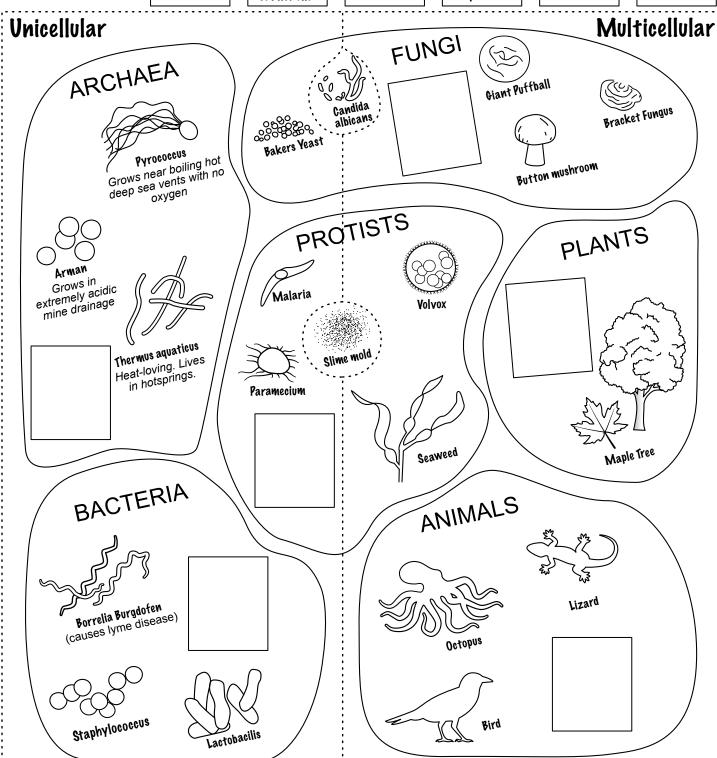
Your notes: Eukaryotic cells can have incredibly different shape's and parts, but they will always contain: A NUCLEUS which holds the DNA MITOCHONDRIA which provide energy MEMBRANE which surrounds the cell RIBOSOMES which make proteins

BONUS ORGANELLE!

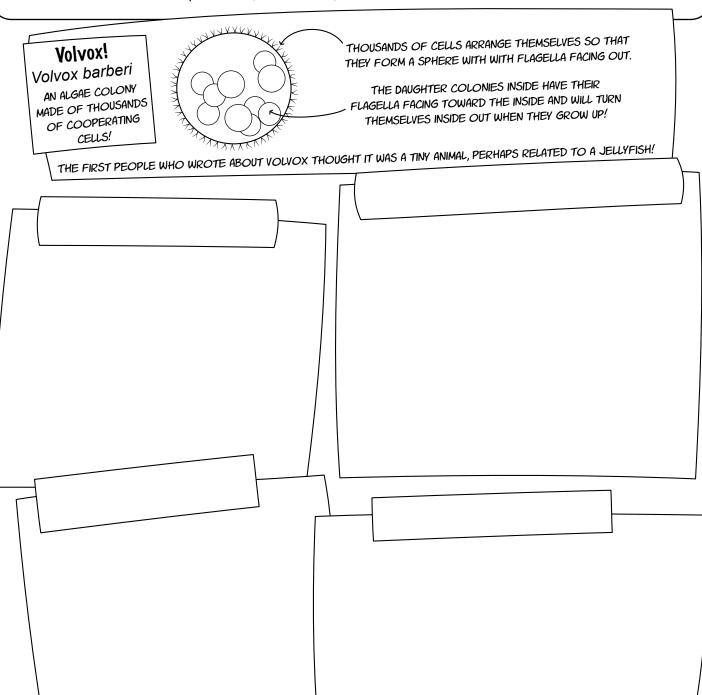
What is the crazy-shaped thing around the nucleus with ribosomes stuck to it? It's called the **endoplasmic reticulum** and it helps make proteins. We won't be talking about it more in this class, but of all the organelles, it has one of the coolest names!

Cellular Life

Can you place each of these organisms in their matching category?



Taxonomy is the study of classifying groups of organisms based on shared characteristics. Classification systems have changed a lot in recent years thanks to the ability to compare DNA sequences. We'll learn more about taxonomy in Biology 2.


Five misclassified marvels

Scientists group things into categories to better understand them, but some organisms don't exactly fit! This page is dedicated to five organisms that people often mistake for something else. One is already filled out as an example. Choose 4 more from these lists to fill in the remaining blocks!

Plant or Fungus? Caloplaca marina (Orange Sea Lichen), Sarcodes sanguina (Snow Flower), Monotropa uniflora (Ghost Pipe), or Clathrus archeri (Octopus Stinkhorn);

Animal or Plant? Diploria labyrinthiformis (Brain Coral), Xestospongia muta (Giant barrel sponge), Elysia chlorotica (Emerald Elysia), or Pseudocolochirus violaceus (Sea Apple)

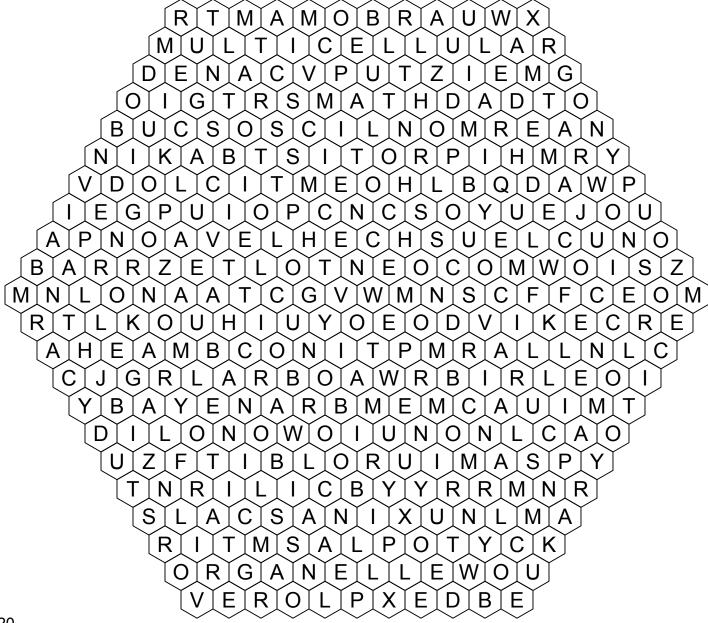
What in the world? Caulerpa taxifolia, Acetabularia, and Volvox.

ANSWER THE QUESTIONS TO SEE WHAT YOU LEARNED ABOUT CELLULAR LIFE!

- Which of these is the best simple definition for the word homeostasis?
 - A. The ability to regulate internal conditions.
 - B. The ability to use energy.
 - C. The ability to reproduce.
 - D. The ability to respond to a stimulus.
- (2) What are two characteristics of living things?
- When did humans invent a microscope that can see structures inside a cell that are smaller then the wavelength of light (< 500 nanometers)?
 - A. 1665
 - B. 1850
 - C. 1903
 - D. 1951
- No cell is large enough to be viewed without the help of a microscope.
 - A. True
 - B. False
- (5) Which type of cell has a nucleus?
 - A. Prokaryotic
 - B. Eukaryotic
- (6) Fungi are plants, but plants are not fungi.
 - A. True
 - B. False
- Which domains of life have both single-celled and multi-celled organisms?
 - A. Only protists
 - B. Archaea and eubacteria
 - C. Fungi and protists
 - D. Only archaea
 - E. Only fungi
- 8 Which of the following are prokaryotic?
 - A. Bacteria and archaea
 - B. Fungi, animals, and plants
- 9 Protists are which type of cell?
 - A. Prokaryotic
 - B. Eukaryotic

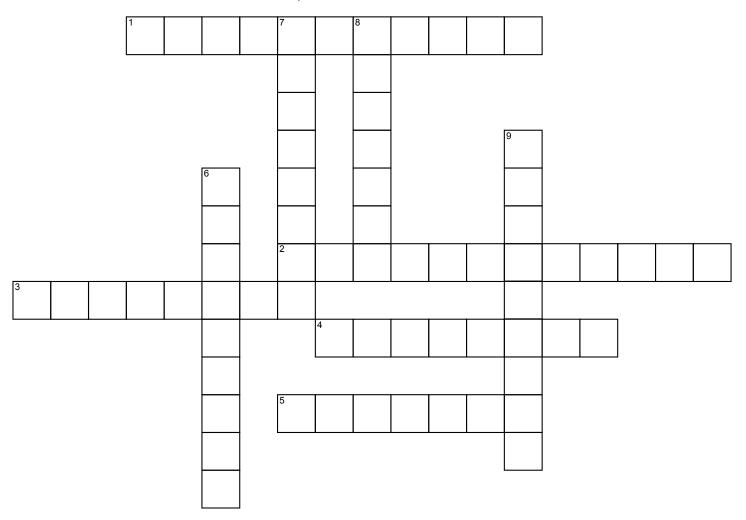
- (10) A cell can only have one nucleus.
 - A. True
 - B. False
- The average prokaryotic cell is _____ than the average eukaryotic cell.
 - A. 2 to 5 times smaller
 - B. 20 to 100 times smaller
 - C. More than 1,000 times smaller
- Which organelle is responsible for making proteins in the cell?
 - A. Mitochondria
 - B. Ribosome
 - C. Plasma membrane
 - D. Endoplasmic reticulum
- (13) Which of the following are made of cells?
 - A. Wood
 - B. Plastic
 - C. Tomato
 - D. Polyester fabric
- Which organelle uses oxygen and sugar to create energy for the cell?
 - A. Mitochondria
 - B. Chloroplast
 - C. Nucleus
 - D. Flagella
- (15) Which of the following statements is true?
 - A. Some living things are too small to see.
 - B. Animals are made of prokaryotic cells.
 - C. Fungi contain chloroplasts.
 - D. Every cell has a nucleus.
- (16) Which organelle is only found in plants or protists?
 - A. Chloroplasts
 - B. Mitochondria
- Eukaryotic cells are bigger than prokaryotic cells.
 - A. True
 - B. False

Which of these is the best simple definition for the word metabolism?	
A. The ability to regulate internal conditions	
B. The ability to use energyC. The ability to reproduce	
D. The ability to respond to a stimulus	
2. The ability to reopena to a cumulate	
19 Draw a simple bacterial cell. Label the plasma membrane, cell wall, DNA, ribosomes	s, and flagella.
(20) Draw a simple animal cell. Label the plasma membrane, DNA, ribosomes, mitochon	dria, and nucleus.
)
	——science m®m ∕ 19


Gellular Word Search

There are a lot of new words to learn when studying biology. Repetition is the best way to learn them, and word games can be part of that! Find each of the hidden words in the word-search. The words can run in any direction: horizontal or diagonal, and the letters might go left to right or right to left!

METABOLISM
MEMBRANE
RIBOSOME
MITOCHONDRIA
DEOXYRIBONUCLEIC ACID
CYTOPLASM


NUCLEUS
CHLOROPLAST
FLAGELLA
ARCHAEA
PROKARYOTIC
UNICELLULAR

MULTICELLULAR
EUKARYOTIC
PROTIST
CILLIA
ORGANELLE

Biology Crossword

Use the clues below to fill in the crossword puzzle.

Horizontal Words

- 1. The organelle that performs photosynthesis.
- 2. The 'powerhouse' of the cell.
- 3. Keeps the cell intact by surrounding the
- 4. A tail that some cells use to travel through
- 5. The central feature of most plant, fungus, or animal cells.

Vertical Words

- 6. A structure within a living cell.
- 7. Organelles that assist the function of DNA, very common throughout the cell.
- 8. An organism that is eukaryotic but not a fungus, animal, or plant.
- 9. Contains all of the organelles.